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CHAPTER 1: LANDING GEAR AERODYNAMIC NOISE PREDICTION

USING UNSTRUCTURED GRIDS

Frederic J. Souliez*, Lyle N. Long t, Philip J. Morris _ and Anupam Sharma °

Department of Aerospace Engineering
The Pennsylvzmia State University

University Park, PA 16802

Abstract

Aerodynamic noise from a landing gear in a uniform flow is computed using the

Ffowcs Williams-Hawkings (FW-H) equation. The time accurate flow data on the

surface is obtained using a finite volume flow solver on an unstructured grid. The

Ffowcs Williams-Hawkings equation is solved using surface integrals over the landing

gear surface and over a permeable surface away from the landing gear. Two geometric

configurations are tested in order to assess the impact of two lateral struts on the sound

level and directivity in the far-field. Predictions from the F.fowcs Williams-Hawkings

code are compared with direct calculations by the flow solver at several observer

locations inside the computational domain. The permeable Ffowcs Williams-Hawkings

surface predictions match those of the flow solver in the near-field. Far-field noise

calculations coincide for both integration surfaces. The increase in drag observed

between the two landing gear configurations is reflected in the sound pressure level and

directivity mainly in the streamwise direction.
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Introduction

The Ffowcs Williams-Hawkings (FW-H) equation has recently been used with

permeable surfaces in order to predict aerodynamic noise 1'2. It is an inexpensive method

to include the quadrupole source terms inside the FW-H surface without performing any

volume integrations. This can significantly improve the accuracy of the noise predictions

at locations where nonlinear interactions in the flow cannot be ignored. This is notably

the case with highly turbulent flows such as high Reynolds number jets and wakes. It is

also only slightly more expensive to use than a moving Kirchhoff surface (see 0zy6riik

and LongS), but without the limitations of Kirchhoff methods.

The motivation for predicting the far-field noise generated by a 4-wheel landing

gear stems from the increasing contribution of airframe noise to the overall sound level of

an aircraft in its landing approach. Early studies in the 1970's by Heller and Dobrzynski 4

showed that high-lift devices such as slats and flaps, as well as deployed gears, generated

noise levels 10 dB higher than those of an aircraft in its "clean" cruise configuration.

Aerospatiale (now EADS Airbus) investigated the noise produced by several Airbus

airplanes, which seems to indicate that noise from high-lift devices is likely to dominate
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for mediumsizeaircraft,while landinggearnoiseseemsmoreof a problem for existing

and future high capacity aircraft. The importance of investigating landing gear noise is

reinforced by Airbus Industry plans to extend the Airbus family towards a high capacity

aircraft.

Heller and Dobrzynski carried out a series of tests with both scale models 4 and

full scale models 5, which underscored the lack of detailed geometric features with model-

scale experiments and their effects on high frequency noise. These early experiments

also showed that there is an increase in noise radiation from tandem axle configurations,

which is the second test case in the present study. However, it was also found during the

full scale experiment that struts, braces and other small features contribute significantly

to the overall sound level. A more recent work by Dobrzynski et al 6 where the impact of

various gear sizes and configurations is measured, illustrates the difficulty in using scale-

model results for full-scale noise predictions. The actual simulation of the landing gear

flow field is also of interest since it potentially affects the inflow of flaps located

downstream. This was experimentally shown by Stoker et al 7 during a wind tunnel

investigation of the airframe noise radiated by a model-scale Boeing 777, in which case a

second high-frequency noise source from the flap system is only seen in the presence of

the landing gear. This landing gear - flap interaction noise source was even shown to

increase significantly by using a highly detailed gear geometry.

As already performed in a previous study by the same authors 8, the goal here is to

combine the flexibility of unstructured grids with the FW-H equation. We use the

Parallel Unstructured Maritime Aerodynamics (PUMA) code for generating the flow

data. PUMA has been validated in several instances for simulating time-accurate flow

-4-



data9'_°.Theaimin thepresentcaseis to evaluatetheimpactonthenoisedirectivityand

intensityof two landinggeargeometries(LDG1andLDG2). It is expectedto observe

largerpressurefluctuationsand a morecomplexthree-dimensionalflow in the case

involvingtwo additionalstruts(LDG2).

The Computational Grids

The grids used for the simulation of the flow over both landing gear

configurations were generated using the commercial package Gridgen by Pointwise, Inc.

Figure 1 and Figure 2 show an overall view of the meshes on the landing gear surfaces

with and without lateral struts respectively. The first mesh consists of about 80,000

surface triangles, for a total of about 880,000 tetrahedra in the volume mesh. The second

mesh reused as much of the previous grid features as possible. With two additional

struts, the number of triangles on the surface went up to 135,0001 with about 1.2 million

tetrahedral cells. Specific attention was given to the cell clustering between the front and

rear wheels, in order to capture as much of the wake from the upstream wheel impinging

on the downstream wheel. Flow separation from the fore wheel and wake impingement

on the aft are expected to generate large unsteady pressure fluctuations and therefore

noise. With the second geometry, great care was given to the mesh refinement between

the two lateral struts, with the aft strut in the wake of the fore strut. The smallest

geometric features were not overly simplified, since they have been shown to generate

high frequency noise as explained in a later section describing the Ffowcs Williams -

Hawkings equation.
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As shownin Figure 3 for the secondgeometry(LDG2), a porousFW-H

integrationsurfacewasusedin additionto theflow datacollectedon the landinggear

surfacesthemselves.Thiswill helpdeterminethemagnitudeof thequadrupolesource

termfor this low Machnumberflow. PermeableFW-H surfaceswereusedfor both

geometries,with about13,000trianglesin thefirst case,and15,500trianglesin thecase

includingtwo lateralstruts.Thiscoarseningmeshawayfromthesolidsurfaceis dueto

computerlimitations. It may not be able to supportthe higher frequencypressure

fluctuations.Theadvantageof theseporoussurfacesis thattheycancapturequadrupole-

like termswithouthavingto performanyvolumeintegration.FW-H surfacescanbe

usedin regionsdominatedbynonlineareffects(unliketheK_irchhoffformulations).

The Gibbs-Poole-Stockmeyeralgorithmtl was used to speed-up the

communicationprocessbetweenCPUs.As shownin Figure4, thisproceduredividesthe

domainintoslicesthatminimizethenumberof messagesbetweeneachprocessor,sothat

eachCPUexchangesdatawith at mosttwo neighboringCPUs. Thetime stepfor the

unsteadysimulationsis determinedby thesmallestcell characteristiclength. At a CFL

number of 0.95, this yields a time step of 0.86E-08 second for the first grid, and 1.90E-08

second for the second grid (due mostly to some improved CAD work in the original

geometry file). The numerical conditions were dictated by the CFL3D run perfomaed at

Langley: the Reynolds number based on the wheel diameter is 1.25 million, for a free

stream Mach number of 0.2. The actual wheel diameter of the landing gear model is 9.4

cm.
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Flow Solver

PUMA (Parallel Unstructured Maritime Aerodynamics) is the computer program

that was used to run the unsteady calculations. It is a finite volume, Runge-Kutta time-

marching code that solves the compressible Navier-Stokes equations and uses

unstructured grids. It uses the Message Passing Interface (MPI) library for parallel

implementation. Its scaling performance for the two configurations is illustrated in figure

5. The flop performance is slightly higher for the second case for any given number of

CPUs, since the ratio of computation over communication is greater for a larger grid.

The facility used to perform the computation is the latest our two Cost effective

Computing Arrays (COCOA and COCOA2) x2. COCOA2 is a Beowulf cluster comprised

of 20 nodes each having dual 800 MHz Pentium III and 1 GB RAM. The cluster has dual

fast-Ethernet on each node and all the nodes are connected using two HP2524 switches

with channel bonding for increased data communication. These machines run Redhat

Linux (version 7.0) and the gcc compiler.

For these simulations the inherent artificial dissipation provided by Roe's flux

integration scheme acts as a sub-grid scale turbulence model. A parallel investigation on

separated flow around a cone 13 shows that the implementation of a Large Eddy

Simulation (LES) method using a Smagorinsky sub-grid scale model 14 may improve

PUMA's accuracy to simulate both mean and turbulent quantities in the wake of a cone

base flow. LES has already been used extensively to compute sound sources 15'16, but

some recent work related to two-time statistics of LES data, would indicate that LES

fields are too coherent if the eddy viscosity model does not include any random
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backscatterIv. Onewayto circumventthismaybe theuseof a dynamicLES,which is

morelikely to yieldenoughbackscatteringto decorrelatethefluid motionatlargescales.

An exampleof the useof a dynamicsubgridscalemodelcombinedwith a Ffowcs

Williams- Hawkingssolveris givenby Morriset a118in anattemptto simulatethejet

noiseforcircularnozzles.

SimulationResults

Simulations were carried out over two cycles based on the expected shedding

frequency of the wheel diameter. Each simulation took about 90 days on 24 CPUs. It is

worth mentioning that the existing amount of data for both gear configurations put a

strain on the available capacity in terms of storage requirements: about 40 Gigabytes of

data have been collected for the two calculations described in this study. Data were

sampled only for the second cycle to minimize the effects of the starting conditions.

Local time stepping was initially used to accelerate the convergence from free-stream

conditions to a realistic state. This is achieved by assigning to each cell the maximum

allowable time step for a given CFL number (pseudo time marching). Global time

stepping is then turned on before unsteady data is sampled. In order to evaluate the total

drag, the momentum deficit method is used by evaluating the velocity deficit in the wake

of the landing gear. More details can be found in Rae and Pope 19. Figure 6 shows the

average velocity deficit right behind the second gear configuration. In the second gear

case, there is a good qualitative agreement with experimental results published by Stoker 7

in the high-fidelity landing gear configuration. Figure 7 shows the drag forces computed

by integrating the pressure on the gear surface (pressure drag) and using Pope's wake
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deficit approach(labeledtotal drag). Resultsareshownfor both gearconfigurations

duringapproximately7 millisecondsof simulatedflow time,givingenoughtime for the

fluid to coverthreetimesthegeartotal length. Theforcecoefficients(drag,lateraland

verticalforce)arethecomputedforcesdividedby thelandinggearsurfaceareaandthe

dynamicpressure.The increasein overalldragdueto the introductionof the lateral

supportstrutsis largesincethesecomponentsarenotaerodynamicallyprofiledandare

comparableto flat platesfacingtheincomingfluid flow. Figure8 illustratesthelateral

forcesstemmingfromthepresenceof thesetwostruts.

Oneexpectsthefar-fieldsoundpressurelevelto reflectthis unsteadyloadingin

both its intensityand directivity. Figure9, which is a displayof the instantaneous

distributionof pressureonthelandinggearsurfacein its secondconfiguration,showsthe

pressureon thesesupportstruts,as well ason the wheels. Figure 10 showsa 3D

representationof somevortex filamentssheddingoff variousgearcomponents,and

highlighttheimpactof theupstreamelements'wakeontogearelementsat downstream

locations.Theeffectof thesevorticesis notcompletelycapturedby theFW-H surface

whichliesonthelandinggearitself. HoweverthepermeableFW-Hsurfacedoesaccount

forall theeffectsinducedbythesefilamentsuntil theycrossitsboundaries.

Far-Field Noise Prediction

Only recently has the FW-H equation been used on a permeable surface, di

20
Francescantonio was able to show that simply integrating the surface source terms on a

porous FW-H surface does account for the quadrupole sources enclosed within the
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surface.TheFW-H equationis written in the standarddifferentialform includingall

quadrupole,dipoleandmonopolesourcetermsas

a _ (1)
2p'(x,t): x_Oxj [T,,H(f)]:_---_[L, fi(f) J+_[ (poU.)fi(f) ]

Where Li and U. are defined as

U. =U ih i U i= 1- v i+-
Po

(2)

The subscript n indicates the projection of a vector quantity in the surface normal

direction. Using the solution to the above equation given in Brentner and Farassat 21 and

neglecting the quadrupole terms, the pressure fluctuation at a given observer location x

and time t is (equation 3 below)

4zrp'(x,t)= f F mr L (,- )
+

I dS
c rO2M,) JL;O-M )I=o L r2(1-Mr) 2 JJ_,,

FW-H code validation

In the absence (at the moment) of experimental acoustic data to compare to, an

already-proven method was implemented: the use of the CFD results to validate the FW-

H sound predictions. As was done by the authors in a previous test case s, the pressure

fluctuations computed by the flow solver PUMA at an observer in the near field were
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comparedwith thepredictionsgivenbytheFW-Hpost-processingutility. Althoughthe

near-field pressurefluctuationsare large, and likely contain a great amount of

hydrodynamicoscillations,thederivationof theFW-Hequationis suchthatall pressure

perturbations(acousticandhydrodynamic)shouldbe recovered.Examplesin thenear

field aregivenby FarassatandBrentner22in thecaseof high-speedimpulsivenoiseat

rotorbladetipMachnumbercloseto 0.9. It is assumedthatataMachnumberof 0.2,the

quadrupoletermsdonotcontributesignificantlyto thefar-fieldnoise. Thesolutionpo

to the quadrupole term of the FW-H equation is:

4_" p_(x,t) = 32 (4)ax,ax--;} I
-_ f>0 r

The volume integration, if performed, must be carried out over a large volume

and represents a large computational task. The far field approximation of equation 4

reduces to:

4xp;(x,t)-1 2 2 ico,2 I Trraad 
-_ f>O r

(5)

However, there is in the present case an interest in capturing quadrupole effects in

the near field, so that an exact result to the FW-H is needed instead of the far field

approximation. Farassat and Brentner 23 decomposed the quadrupole noise term into three

components varying with l/r, 1/r2 and 1/r3 respectively:
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,. . 1_2 If
4,'rpQ (x")=c- _ J I T'_ dad'r

-_f>o r

3 i 3T_ -T.+ 3---; I. r 2 dad_
_f>O

+
' 3L -7;,,.

_f>O

(6)

There is a possibility that the second and third terms may contribute in a

significant way to the near field pressure variations. This implies that in order to validate

the FW-H predictions against the CFD results one may have to account for some of these

nonlinear effects in addition to loading noise in the near field since the observer is in a

highly perturbed propagating medium. In the current derivation of the FW-H equation,

the quadrupole term is not computed (to reduce computing time and to limit storage

requirements). However the porous FW-H surface shown in a previous figure has the

ability to recover all nonlinear effects occurring within its own boundaries. Figure 11 is

an illustration of the instantaneous pressure distribution on the permeable FW-H

integration surface.

Observers were placed just above the landing gear main leg (x -- 2.68 cm, y = 0

cm and z = 17 cm for observer whose pressure is depicted in Figure 12), where the

porous FW-H mesh is more refined, so that the FW-H predictions can take place using

both the solid and the porous FW-H surfaces. An example of comparisons with the

PUMA results at one of these near-field observer locations is shown in Figure 12. This

shows good agreement between the porous FW-H surface predictions and the solver

computation, whereas the solid FW-H surface misses by more than 50% some of the
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pressurefluctuations. This demonstratesthe ability of the secondFW-H surfaceto

predictthe entirepressureoscillations, either of acoustic or hydrodynamic nature. It

tends to suggest that quadrupole effects may represent a significant contribution to the

overall near-field sound level even at moderate Mach numbers. Unless a volume

integration is performed over the entire CFD domain, the entire pressure perturbation

cannot be exactly reproduced where nonlinear effects are important and where vortices

flow across the permeable FW-H surface.

As expected, the agreement between the predictions from the two FW-H surfaces

improves in the far-field. Figure 13 shows the pressure time history at 40 radii from the

landing gear at a 50 degree angle with respect to the downstream axis. The field

produced by the coarser FW-H surface off the landing gear does not reflect the same

high-frequency fluctuations given by the predictions coming from data collected on the

gear itself. In view of experimental results described earlier, it was decided to use the

solid FW-H surface to investigate the far-field noise directivity, where high-frequency

signals are thought to be significant. Figure 14 below illustrates the decrease of the RMS

pressure signal as one moves away from the landing gear along the downstream axis.

Calculations were made at 20 observers from 25 wheel diameters down to 50 wheel

diameters in the wake of the landing gear. Both FW-H surface data were used and

compared with a trend line assuming a signal decaying with 1/r. As observed previously,

the agreement between the two surface predictions improves with increasing distance

from the landing gear. As one moves further away from the landing gear, it is seen by the

observer as an acoustic compact source, and the signal intensity should decrease with the

inverse of the distance from the source.
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Sound directivity patterns

The sound directivity in the medium- and far-field requires the use of a parallel

version of the FW-H post-processing program 8'24. For each radii away from the landing

gear, 72 observer locations are defined, so that a resolution of 5 degree angle is obtained.

A total of 648 observer points were defined, and are illustrated in Figure 15, which shows

the relative scale with respect to the landing gear. For both gear configurations, all three

orientation planes were studied and the results are reported in Figures 16a to 16f, Figures

17a to 17f and Figures 18a to 18f for the first and second gear configurations from a

streamwise, spanwise and vertical perpective respectively. Polar directivity plots at

radial locations of 10, 15 and 20 radii from the gear are plotted separately from the

locations further away (30 to 50 radii from the gear) for scaling issues. Sound Pressure

Level (SPL) contours with a reference pressure of 6x104 Pa are also presented for radial

locations varying from 25 to 50 radii from the landing gear. The scale for equivalent

configurations is unchanged in order to allow for qualitative comparisons with respect to

both directivity and intensity of the sound pressure signal. In Figures 16 to 18, the

landing gear is not to scale, and is meant to illustrate which orientation axis is shown.

The drag augmentation is reflected in the sound directivity patterns of both

configurations. The intensity of the RMS pressure is greatly increased along the

streamwise direction for the second gear case (LDG2). This is due to the two support

struts on the aerodynamic profile of the landing gear. Regarding the lateral noise, the two

struts seem to interfere with the build-up of sound, so that the signal in the spanwise

direction is less than that in the clean configuration, where varying lateral forces on the
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gearleg createpressurelevelsin thefar-fieldcomparableto thosealongthestreamwise

direction. In both cases,the near-fieldpressureperturbationsaredominatedby the

fluctuationsin drag. Littlenoiseis generatedin theverticaldirectionsincemostof the

lift anddragvariationsaregeneratedon themaingearleg. Theoverallpressurefield

looksmuchmoredisturbedin the secondgearconfiguration,illustratingthe complex

three-dimensionalityof thenoise-generatingflowpattern.

Conclusion

Theflow field aroundtwo landinggearconfigurationsof increasingcomplexity

hasbeenassessed.Thewakedeficitobservedbehindthelandinggearis verysimilarto

thatexperimentallymeasuredon comparableconfigurations.A parallelversionof the

FfowcsWilliams- HawkingsequationhasbeenimplementedusinginexpensiveBeowulf

clustersto extractnear-andfar-fieldsoundinformation.BothsolidandpermeableFW-H

integrationsurfaceshavebeenused.Excellentagreementhasbeenobtainedin thenear

field betweenthe porousFW-H surfacepredictionsandtheCFD solverresultswhere

hydrodynamicfluctuationsareexpectedto dominateandareof greatermagnitudesthan

thosetypical of acousticsignals. More work is neededin order to show that the

discrepancyobservedbetweenthe solidandporousFW-H surfacesin the near-fieldis

linkedto short-rangequadrupole-likeeffectseventhoughtheproblemthatwasdealtwith

in thepresentcaseis a relativelylow Machnumberflow for this kind of effectsto be

significant.

The comparisonof acousticpredictionsproducedby the two FW-H surfaces

improvesastheobserverlocationis movedfurtherawayin thefar field. Theincreasein
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dragstemmingfromthelateralstrutsis reflectedin thenoiselevelanddirectivity.There

is a significantincreasein soundintensityin the streamwisedirection,whereasthe

disturbancecausedbythesegearelementsseemsto interferewith thevortexsheddingoff

thegearlegandtheresultinglateralsoundradiation.
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Figure 1 Surface mesh of first landing gear conflguration(LDG 1)
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Figure 2 Surface mesh of second landing gear configuration (LDG2)



Figure 3 Partial view of the porous FW-H surface around'LDG2 gear configuration
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Figure 4 GPS partitioning on LDG1 landing gear surface _icross 16 processors
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Figure 5 Parallel speed up on COCOA2 for both landing gear configurations
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Figure 6 Average velocity deficit in the wake of the LDG2 configuration
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AERODYNAMIC NOISE PREDICTION

USING PARALLEL METHODS ON

UNSTRUCTURED GRIDS
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Aerodynamic noise from a cone in a uniform flow is computed using the Ffowcs

Williams-Hawklngs (FW-H) equation. The time accurate flow data is obtained using a

finite volume flow solver on an unstructured grid. The FW-H equation is solved for surface

integrals over a permeable surface away from the cone. Predictions from the FW-H code

are compared with direct calculations by the flow solver at a few observer locations inside

the computational domain. A very good qualitative match is obtained. Sound directivity

patterns in the azimuthal and in the longitudinal directions are presented. The FW-H

code is also validated against a model problem of a monopole in a uniform mean flow.
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refer Eq. 2
U_g_

u,_
components of local fluid velocity

averaged streamwise perturbation velocity
uidi
local normal velocity of the source surface
Dirac delta function

6(f) = 1 for f = 0, otherwise 5(f) = 0
Kronecker delta function,

5ij = 1 for i = j, otherwise 5ij = 0
density of the fluid
freestream density of the fluid

density perturbation, p - po
vorticity (s -1)

angular frequency of the monopole source
O2

wave operator, {212_ (_b-& - _72)

Introduction

ECENTLY, the Ffowcs Williams-Hawkings
(FW-H) equation has been used with permeable

surfaces for predicting aerodynamic noise. The
application of FW-H in this manner effectively allows
for the inclusion of the quadrupole source terms inside

the surface without performing volume integrations.
This has significantly improved the accuracy of noise
prediction for cases where the contribution from
nonlinear interactions in the flow cannot be ignored.

This is typical of highly turbulent flows, for example,
high Reynolds number jets and wakes.

The FW-H equation requires time accurate data on,

and in the volume inside the permeable surface. This
data is usually obtained by solving the Euler/Navier-
Stokes equations accurately in time. Since the FW-H
equation uses data from within the FW-H surface, the
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outer grid can be made coarse without much loss of

accuracy. Unstructured grids provide great flexibility

in distributing the grid in the domain, and hence can

be used to cluster the cells inside the FW-H surface.

This feature can be exploited to significantly increase

the computation speed while keeping almost the same

accuracy in predicting aerodynamic noise. This will

also permit the modeling of complex geometries such

as helicopter fuselages, landing gear, and flaps.

The goal here is to test the combination of unstruc-

tured grids with the FW-H equation in predicting the

aerodynamic noise. The test case is chosen to be

the flow over a cone. A cone has sharp edges which

fixes the separation point. This makes the flow fairly

Reynold's number independent.

We use the Parallel Unstructured Maritime Aero-

dynamics (PUMA) 1 code for generating the time-

accurate flow data. PUMA has been validated for

time-accurate computations. 2-4 The ultimate aim is

to predict the airframe noise from complex geometries

such as landing gear, slats, and flaps. This cone case

may be considered as a benchmark problem.

The Grid

The grid used for the simulation of the flow over a

cone of vertex angle 60 ° was generated using Gridgen.

Figure 1 shows an overall view of the mesh consisting

of approximately 280,000 tetrahedra. The clustering

was done around the cone and in the wake region with

increasing cell size towards the outer boundaries of the

computational domain. The reason for using Gridgen

comes from one interesting feature of this commer-

cial software: arbitrary surfaces can be created around

the cone (one within the CFD domain boundaries and

the other being the CFD domain boundary) and are

sources for the meshing algorithm. It is possible to

export separately any of these closed surfaces in a sep-

arate file, providing a means to extract flow data on the

surface using a FW-H module that was added to the

unstructured solver. The smallest cylinder was used as

a porous FW-H surface. At the bounding faces of the

CFD domain, Riemann boundary conditions were as-

signed at each face center, hence minimizing reflections

from the boundaries into the computational domain.

The large cells in the far-field also help dissipate any

reflections. A no-slip condition was used at the solid

surface, even though the boundary layer was not re-

solved due to computer limitations.

By using a set of faces that are actually used by the

flow solver during the computation, there is no addi-

tional work required to extract the data needed for

the far-field noise. This type of FW-H surface also re-

flects the true mesh clustering present where the flow

variables are locally being computed: there is no loss

in accuracy due to the interpolation onto a surface

whose refinement might not be that of the computa-

tional grid. Since only the surface terms are evaluated

,_2-,+......_-- ,_ ,.., ;._._..,

Fig. 1 Overall view of the 280,000 cell mesh.

during the acoustic prediction procedure, one does not

have to take into account any phenomenon occurring

outside the integration surface. The surface can also

cross regions dominated by nonlinear effects.

During a run, the faces (triangles in this case) would

be identified and flagged on each CPU, so that face

data would be output at a prescribed sampling rate

(around 50 kHz in the present case): the sampling

was done in such a'm_ner that one had at least 20

data points per wavelength, the shortest wavelength

being 10 times that of the simulated shedding fre-

quency. To avoid any redundant data, faces shared

between two adjacent CPUs had to be identified at

the beginning of each run, so that the number of faces

whose data are output is identical to the number of

triangles on the actual FW-H surface. The grid par-

titioning being done dynamically each time a run is

initialized, the global cell indexing changes from run to

run, making it necessary to run the above flagging pro-

cedure any time the program is restarted. This makes

the routine independent of the number of CPUs being

used. Figure 2 illustrates the regions on the surface

shared between 8 processors using the Gibbs-Poole-

Stockmeyer reordering algorithm. 5 As expected, each

region is a neighbor to at most two other partitions,

minimizing the amount of inter-processor communica-

tion.

The time step needed for a time-accurate solution is

determined by the smallest cell characteristic length.
This is estimated to be one third of the cell volume

divided by the maximum face area. For the grid

described above, this yields a time step of 9.45E-08

second at a CFL number of 0.9. The shedding fre-

quency found during the experimental investigation of

the flow is 36 Hz, for a Strouhal number equal to 0.171.
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5

Fig. 2 Partitioning of the FW-H surface across 8
processors.

The Strouhal number was defined based on the cone di-

ameter as St = fsd/U_. The numerical simulation is

performed at Mach 0.2 at standard atmospheric pres-

sure and temperature conditions, with an increased

viscosity to match the experiment's Reynolds number

(50,000). Scaling the Strouhal number to the simu-

lation's Mach number yields a shedding frequency of

230 Hz. The computation of a complete shedding cycle

requires roughly 46,000 iterations.

The Flow Solver - PUMA

PUMA is a computer program, written in C, for

the analysis of internal and external non-reacting

compressible flows over arbitrary complex geometries.

PUMA uses the Message Passing Interface (MPI) to

run the code in parallel. It can be run on arbitrary

number of processors with very good scaling perfor-

mance. Several papers 2,4 detail the benchmarking of

the performance, and validation of PUMA.

PUMA is based on finite volume methods and sup-

ports mixed topology unstructured grids composed of

tetrahedra, wedges, pyramids and hexahedra. The

code may be run to preserve time accuracy for un-

steady problems, or may be run using a pseudo-

unsteady formulation to enhance the convergence to

the steady state. Primitive flow quantities are com-

puted at the cell centers. The code can be restarted

from any point of time at which the solution is avail-

able from previous computations. All flow variables

are stored with double precision, but may be optionally

stored as single precision to save memory and commu-

nication time at the cost of reduced precision.

Parallel Machines

Computational Aeroacoustics (CAA) codes are usu-

ally very computationally intensive. Even with very

powerful machines, such jobs may require days, or even

months to give results. Parallel computing using Be-

owulf clusters offers an inexpensive way to handle such

time-consuming simulations in reasonable amount of

time.

Three facilities offering parallel computational

power at Penn State were used for the computations

- COst effective COmputing Array (COCOA), 2 CO-
COA2 and LionX. 6 COCOA is a Beowulf cluster com-

prising of 25 machines each having dual 400 MHz

Pentium II processor. This facility was assembled by

the authors and their colleagues in the Department of

Aerospace Engineering at Penn State. The machines

are connected via fast-Ethernet network which can

support up to 100 Mbps bandwidth. A single Baynet-

works 24-port fast-Ethernet switch with a backplane

bandwidth of 2.5 Gbps is used for the networking. All

the processors are dedicated to run parallel jobs. The

operating system is Red Hat Linux. Message Pass-

ing Interface (MPI) is used for parallel programming

and the Gnu C compiler is used for compiling PUMA.

Details regarding setting up and benchmarking of CO-

COA may be obtained from Modi and Long 2 and

COCOA's website. 7

COCOA was primarily set up to make parallel com-

puting facility readily available to the CFD group of

the Aerospace Engineering Department at Pennsylva-

nia State University. The total cost of the cluster was

just $80,000 in the year 1998, when it was set up.

Since then this facility has been intensively used for

various CFD simulations. COCOA2 is a newly assem-

bled Beowulf cluster at Penn State. It has 21 nodes

each having dual 800 MHz Pentium III processors and

1 GB RAM each. The cluster has dual fast-Ethernet

per node and all the nodes are connected using two

HP2524 switches with channel bonding.

Figure 4 plots the parallel speedup for COCOA and

COCOA2 (1 Mflop = one million floating point opera-

tions per second). Fairly good performance is obtained

considering the small size of the problem. Figure 4

shows tile reduction in the flop rate per processor as

the grid points are distributed over a larger number

of processors. This trend is typical of Beowulf clus-

ters as the ratio of computation over communication

decreases.

LionX is also a Beowulf cluster with 32 machines

(each having dual 400 MHz Intel Xeon processors).

These machines are connected via Myricom Myrinet

with wire speed 1.28 Gbps. LionX also uses Linux with

MPI for parallel programming. Performance com-

parison and benchmarking results for LionX can be

obtained from its website. 6

CFD Results

After initializing all variables to the freestream val-

ues, local time stepping is used to accelerate the con-

vergence towards a physically realistic flow. This is
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done by assigning to each cell the maximum allowable
time step for a given CFL number based on each cell

characteristic cell length. Global time stepping is then
turned on for several cycles before data are sampled,
to ensure that the data on the FW-H surface follow

the equations of motion. Figure 5 illustrates the vor-

ticity patterns in the wake of the cone, showing strong
recirculation phenomena. The noise from this recir-
culation is predicted by the FW-H module. Figure 6

is the averaged streamline contour over one shedding
period, illustrating the axisymmetric bubble that was
observed during Calvert's experimental study. 8

In order to validate the solution, multiple compar-

isons were made between the simulation and the exper-
imental measurements. A basic Smagorinksy sub-grid
scale turbulence model 9 was added to the flow solver

in order to improve the predictions, since a large-eddy
simulation should yield better turbulent quantities.

Fig. 6 Average streamlines over one shedding cy-
cle •

Figure 7 shows the averaged streamwise velocity

profiles computed by the original flow solver and those
computed by the same solver combined with an LES.
In all three c&_es the magnitude of the reverse flow
velocity is under predicted when compared with ex-

perimental measurements. The predictions agree fairly
well with Calvert's data in terms of the length of the
recirculation zone. Past the stagnation point, the re-

sults including LES modeling follow the experimental
curve more closely than those computed without any
turbulence model•

Figure 8 illustrates the variation of the pressure co-

efficient Cp along the wake centerline. In this case,
the LES having the largest sub-grid scale constant
Cs greatly over-corrects the pressure drop in the nea_
wake of the cone. The LES using a Smagorinsky
constant of 0.10 matches the measured pressure data
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very well until the stagnation point is reached. These
results are consistent with those found in other re-

lated investigations, using either the k-e turbulence
model l° or the k-e-v 2 model, zl These simulations were

compared against a set of experiments 12 at a lower

Reynolds number (42,000). Madabhushi z3 also used
an LES with as many as 850,000 mesh points, but

completely over-predicted the length of the recircula-
tion zone.

Figure 9 shows that the averaged streamwise per-

turbation velocity is not well predicted using any of

the sub-grid scale constants. With the grid coarsening
in the far wake, the fluctuating velocities are damped

very rapidly as one goes away from the cone base. It
is the flow solver without any turbulence model that

yields unsteady velocity values that are closest to the
experimental data. The solution without LES was se-
lected to try to predict the far-field noise. It also leads
to the conclusion that a more advanced turbulence

model (dynamic LES, Detached Eddy Simulation) is
needed to simulate such separated flows, as found in
Strelets. 14

Far-Field Noise Prediction

The two commonly Used methods for far-field aero-
dynamic noise predictions use the Kirchhoff equation
or the Ffowcs Williams-Hawkings (FW-H) equation.

While the governing equation in the 'moving surface'
Kirchhoff formulation 15 is a convective wave equation,
the FW-H equation is an exact rearrangement of the
continuity and the momentum equations into the form

of an inhomogeneous wave equation. Therein lies the
strength of the FW-H equation over the Kirchhoff for-
mulation. The FW-H equation gives accurate results
even if the surface of integration lies in the nonlinear

flow region. This is typically the case in jets and wakes
when the nonlinear region extends to large distances
downstream.

In the Kirchhoff formulation the source terms are
assumed to be distributed over a fictitious surface in

the flow. The nonlinear effects (nonlinear wave prop-
agation and steepening; variations in the local sound
speed; and noise generated by shocks, vorticity, and
turbulence in the flow field) happening within the

Kirchhoff surface are captured by the surface integra-
tion terms, but the Kirchhoff formulation requires the

integration surface to be placed in a linear flow re-
gion (i.e. far away from the body). This is difficult
to achieve as most computational grids are generated

with the concern of minimizing computations. Usually,
a fine quality mesh is used near the body with increas-
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ing cell size towards the outer boundaries. Therefore,

the quality of the solution available in the linear flow

region is generally bad. The FW-H equation, on the

other hand, works fine even if the integration surface

is in the nonlinear flow region. A detailed comparison

of the Kirchhoff and FW-H formulations is provided

in Brentner and Farassat. _6

The solution of the full FW-H equation requires the

evaluation of two surface integrals and one volume

integral. The surface integrations correspond to the

"thickness" noise (monopole) and the "loading" noise

(dipole). The volume integration corresponds to the

quadrupole term which accounts for the nonlinearity

in the flow. 15,17 Evaluating the volume integral can

be extremely computationally intensive and difficult

to implement. Fortunately, the quadrupole term can

be safely ignored for most subsonic flows as is the case

in the present study.

Only recently has the FW-H equation been used on

a fictitious (i.e. not the same as the body) permeable

integration surface Is - exactly like the Kirchhoff ap-

proach, di Francescantonio is demonstrated that when

the FW-H approach is applied on a Kirchhoff-type

surface, the quadrupole sources enclosed within the

surface are accounted for by the surface sources. It

should be noted that the "thickness" noise and the

"loading" noise as obtained from solving FW-H equa-

tion do not have any physical significance if the surface

of integration is chosen to be permeable (fictitious).

However, when the integration surface coincides with

the body, these terms provide a physical insight into

the source of sound generation.

The FW-H equation is written in the standard dif-

ferential form as

0 2

O_p'(x,t) - oz_ozj [T_jH(I)] (1)

0 [L_(/)] + 0Oz, N [(poU.),_(Y)]

where Li and Un are defined as

Un = Ui_i :: Ui = (1 - P)vi + pUipo

Li = Pijrfj + pui(u,_ - vn) (2)

and Tq is the Lighthill stress tensor. The FW-H equa-

tion can be solved using the formulation in Brentner

and Farassat, 16 and the solution can be written in an

integral form as

+

+

rel_

-- LM

le_37 FW-H IXedk:t_*_ *
ilytic_l .....

. i!ii-
-2e-_8

_= -4e-O8 _ ;

-8e-o8

-le-.O,

0.5 1 1.5 time 2(tn _1 2.5 3 35

Fig. 10 Validation of the FW-H code against the

analytical solution for a stationary monopole in a
uniform mean flow.

The quadrupole term is ignored in the present formu-

lation. The integrations are performed on the FW-H

surface at retarded time. Since the FW-H surface is

fixed relative to the body (the cone) for this study, and

the flow Mach number is constant, the fol!owing terms

in the above integrals are zero : U_ = Mr = 0. The

standard time binning technique discussed by OzySriik

and Long 19 is used for obtaining pressure at the ob-

server locations.

The FW-H code and its Validation

The FW-H code is written in Fortran 90. The

code was tested for a model problem - a stationary

monopole in a unifocm mean flow. The FW-H surface

is chosen to be a box made up of rectangular panels.

The analytical solution to the mode] problem is eval-

uated at the center of each panel to obtain the time

history of the primitive variables on the FW-H sur-

face. The prediction from the FW-H code (using the

analytical data on the surface as input) is then com-

pared with the analytical pressure perturbation at a

point outside the surface. Figure 10 compares at an

arbitrary point (300 m, 0, 0) the pressure perturba-

tion predicted by the FW-H code and that obtained

analytically for a stationary monopole source with an

amplitude of 0.01 Pascals and a frequency of 2.267 Hz

placed in a uniform mean flow of 0.3 Mach number.

The analytical solution to this problem is :

¢(x,t)
e exp(iw_-.)

4rr [(x + Uo(r, - t)) 2 + y2 + z211/2

1

M0(=+U0(_.-e))
1 + [(=+Uo(r._t))2+_2+z2p/2

where T. is given by

(4)

7-, =t+
Mox- [(x 2 + (1 - M02)(y 2 + z2)]

c(1 -M02)
(5)
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Fig. 11 Comparison of the FW-H prediction us-

ing unstructured surface grid against the analytical
solution.

The unstructured grid over the cone is created such

that there is an unstructured cylindrical surface en-

closed in the computational domain (Fig. 1). This

surface is chosen to be the permeable FW-H surface.

The elements of the surface are faces of the tetrahedra,

and therefore, triangles. Since these triangles are cho-

sen from the unstructured mesh, the area and normal

varies from element to element. This, however, is not

a problem because the FW-H equation only requires

information on a closed surface; it does not depend on

the structure of the elements constituting the surface.

Clustering of the surface elements is desired to increase
the resolution of the sources. The FW-H surface used

for the present computation is the inner cylinder in

Fig. 1. This grid was used with the model problem of

stationary monopole in a uniform mean flow to test if

the unstructured grid poses any problems. A perfect

match is observed between the FW-H prediction and

the analytical solution (Fig. 11). The comparison is

made at an aribtrary point (300 m, 0, 0). This con-
firms that an unstructured-mesh surface can be used

as a FW-H surface without any loss of accuracy. Note

that the first few seconds where the FW-H prediction

does not match the analytical solution is the time it

takes for the sound to reach the observer. This delay

is more in Fig. 11 than in Fig. 10 because the unstruc-

tured FW-H surface is very small and hence, farther

away from the observer point than the structured sur-

face used for Fig. 10.

Results for the Cone

PUMA is used to obtain time accurate data (the

primitive flow variables) on the FW-H surface. One

complete shedding cycle of the simulation is used for

far-field noise prediction. Pressure at a few points out-

side the FW-H surface (in the near field) is collected

to compare with the predictions of the FW-H code.

Four points distributed in the azimuthal direction near

the base of the cone and very close to but outside the

FW-H surface were chosen for comparison. The co-

Point No.

_ - .

3

4

Table 1 Coordinates of the observer locations for

comparing FW-H predictions against PUMA.

ordinates of the points are tabulated in Table 1. The

cone has a base diameter of 0.02 m and a vertex angle

of 60 ° . The center of the base of the cone is at the ori-

gin and the vertex points upstream (positive x). The

FW-H surface is a cylinder of radius 0.05 m and length

0.175 m, centered at the origin.

Figure 12 compares the pressure fluctuations at the

four points listed in Table 1. Note that the PUMA

pressure predictions have been shifted up by 20 Pas-

cals. This is relatively a very small amount, about

0.02% of the mean pressure. We believe that this

under-prediction by PUMA may be due to the dis-

sipation caused by inadequate clustering of grid cells.

It may also be due to the small sample size, and we

plan to do ensemble averaging. Note that this error

is of the order of magnitude of pressure pertubations

predicted by the FW-H code at any point inside the

FW-H surface, which should actually be zero. How-

ever, the prediction by the FW-H code agrees very well

qualitatively with the PUMA solution.

Sound Directivity ....

The directivity of the noise from the cone was ob-

tained by calculating the root mean squared (r.m.s.)

pressure perturbation for one shedding cycle at differ-

ent observer locations in azimuthal and longitudinal

directions. Since the calculation for one observer loca-

tion is completely independent of any other location, it

is a perfect problem to run in parallel. Long and Brent-

ner 2° suggested some self-scheduling parallel methods

for multiple serial codes. However, no parallalization

was done for the noise prediction results presented

here.

Figure 13 plots the directivity pattern in the az-

imuthal direction on the plane x = -0.1 m, which is

right behind the base of the cone. The pattern in Fig.

13 is symmetric because of the symmetry of the cone

about its axis. Since the FW-H equation cannot pre-

dict the pressure fluctuation inside the FW-H surface,

we can compute the noise only outside the FW-H sur-

face. Therefore, the directivity patterns are plotted in

an annular region outside the FW-H surface.

Figure 14 plots the directivity pattern in the longi-

tudinal direction on the z = 0 plane. Since the noise

is caused by both turbulence and fluctuating surface

forces, the directivity shows several lobes.

A conventional polar directivity pattern in the lon-

gitudinal direction (z = 0 plane) is plotted in Fig. 15

7oF9
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as predicted by PUMA and FW-H code at various

locations listed in Table 1. 8 OF

Fig. 14 Directivity of the noise in the longitudinal

direction in the plane z = 0.

for observers at 10 different radial locations (r = 0.15
- 0.24 m). In Fig. 15, the cone is pointing to the right;
the radial distance from the origin is equal to the r.m.s.

pressure and the angle (theta) illustrates the location
of the observer point in the domain.

Conclusions

Aerodynamic noise from a cone has been studied
as a model problem to test the possibility of using

unstructured grids for noise prediction from compli-
cated bodies like landing gears, slats etc. A finite
volume flow solver, PUMA has been used to obtain
time-accurate flow data on a permeable FW-H sur-
face. The FW-H code was validated against a model

problem of a monopole in a uniform mean flow. The
predictions from the FW-H code have been compared

Fig. 13 Directivity of the noise in the azimuthal

direction behind the base of the cone (x = -0.1).
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Fig. 15 Polar plot of sound directivity in z = 0

plane at a few radial locations.

at four observer locations in the near field with direct

calculations from PUMA. Noise predictions are made

for a period of one shedding cycle. The comparison

is fairly accurate with only a small D.C shift error.

The directivity patterns of the noise from the cone

are plotted in azimuthal and longitudinal directions.

The sound directivity pattern has been shown to be

fairly complicated due to the complex physics inside

the FW-H surface.
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Abstract

The wake-dominated unsteady subsonic flow of Mach number 0.2 past a cone of vertex an-

gle 60° is calculated numerically using high-order finite difference schemes on structured grids.

The three-dimensional compressible Euler equations are solved to simulate an inviscid flow

that exhibits large fluctuations of pressure and velocity due to the shedding of vortices behind

the cone. An axisymmetric structured grid system is used, that is generated by rotating a two-

dimensional grid plane around a centerline. The grid singularity at the centerline, where the

Jacobian and some grid metrics approach infinity, is avoided by changing the form of the flux

vectors in the Euler equations without any asymptotic assumption or simplification. Fourth-

and sixth-order finite difference schemes are used for the evaluation of spatial derivatives, and

a fourth-order Runge-Kutta scheme is used for marching the solution in time. The complex

wake motions behind the cone are investigated by visualizing the vorticity field. The mean flow

pattern and periodic phenomena are analyzed and compared with the experimental data. This

demonstrates the accuracy of the present approach to further analyses of wake-dominated

flows past axisymmetric bluff bodies.

I. Introduction

Calvert [1] studied experimentally the low-speed flow patterns and the associated periodic

phenomena with flow past a cone of various vertex angles. He noted that there was little pub-

lished work on incompressible flow past an axisymmetric blunt-based body, except some ex-

periments carried out between the 1930's and 1960's. These earlier studies were restricted to

flow visualization at low Reynolds numbers. He also discussed the periodic phenomena associ-

ated with such flows that are presumably related to some kind of regular vortex shedding:

however, the actual wake pattern is unknown above a Reynolds number of a few hundred. Cal-



vert'smeasurementsofmeanandfluctuatingvelocity,andmeanpressureforvariousconean-

glesshowthatthewakesareallsimilar.Thisproblemhasreceivedlittleattentionin eitherex-

perimentalorcomputationalstudiesduringthelastthreedecades.Recently,Longet aI. [2] per-

formed a simulation of a cone wake flow using low-order finite volume methods on unstruc-

tured grids. The wake pattern and periodic phenomena in subsonic flow past a blunt-based

body are of importance in the design of airframe components such as landing gears, especially

for the reduction of aerodynamic noise: but, the existing knowledge of their flow characteristics

is still far from complete. This paper seeks to provide some understanding of these complex

flows through the simulation of the wake generated by an axisymmetric blunt-based cone.

The present paper focuses on the application of high-order finite difference schemes and

structured grids to the computation of a three-dimensional, unsteady, inviscid, compressible

flow past a cone at subsonic speeds. The scope of the present study is limited to the large scales

of the wake turbulence and the shedding vortices, rather than the fine scales of turbulence

whose simulation would demand huge computational resources and time. Therefore, the com-

pressible Euler equations are used in the present computation. Fourth- and sixth-order numeri-

cal schemes, based on central finite differences, are used for the solution of the Euler equations.

These methods have been developed for high accuracy and high resolution in the direct compu-

tation of unsteady flows and acoustics [3, 4]. In addition, an artificial dissipation model and

time-dependent boundary conditions are combined with the high-order schemes for a long-

time stable solution [5-7].

The solutions are produced in a structured grid system generated by rotating a two-

dimensional grid plane around the axis of symmetry. The axisymmetric structured grid has a

grid singularity at the centerline, where the Jacobian and some grid metrics approach infinity.

When a conventional form of the Euler equations is considered, this singularity makes it hard to

calculate the flux variables at the centerline and the flux derivatives near the centerline when

wide differencing stencils are used across the centerline in a generalized coordinate system.



Thispaperproposesawaytoavoidthecenterlinesingularitybychangingtheformoftheflux

vectorsin theEulerequationswithoutanyasymptoticassumptionor simplification.In this

way,allthefluxvariablesandderivativesmaybeevaluatedwithoutlossof accuracy.Thesin-

gularitytreatmentisagreathelpin thecalculationof thefluxderivativesnearthecenterline:

however,theEulerequationsarestill indeterminateatthecenterline.In thepresentapproach,

thesolutionsthemselvesatthecenterlineareinterpolatedfromtheneighboringvalues.

Theproblemconditionsfor thepresentcomputationareafree-streamMachnumberof0.2

andconevertexangleof60°.Thepresentworkprovidesavisualizationofthewakeflow field

with itssheddingvortices,andananalysisofthemeanflowpatternsandtheperiodicphenom-

ena.Theresultsarecomparedto Calvert'sexperimentaldata[1]for validationof theaccuracy

ofthesolution.A spiralpatternof thewakeflowbehindtheconeisshownclearlythrougha

visualizationofthewakevorficityfield.Theinitiallocationoftheregularvortexsheddingand

itsStrouhalnumberaresimulatedcorrectly.Thesesuccessfulcomparisonsindicatethatthepre-

sentmethodologyiscapableofdescribingthree-dimensional,unsteady,bluff-bodywakeflows.

In thenextsection,thegoverningequationsandthetreatmentofthecenterlinesingularity

aredescribed.Thehigh-orderfinitedifferenceschemesarethenintroduced.Thegrid,andini-

tial andboundaryconditionsarethendiscussed.Bothqualitativeandquantitativeresultsfor

thewakeflowfieldandacomparisonwithexperimentarethenpresented.

II. Governing Equations and Centerline Singularity

The governing equations are the three-dimensional compressible Euler equations. The flux

vector form of the Euler equations transformed to the computational domain may be expressed

in generalized coordinates as,



wherethefluxvectorsingeneralizedcoordinatesmayberepresentedas

(2)

The conservative variables and the flux vectors in Cartesian coordinates are given by

P

pu

Q= pv

pw

pu 2+p puv

E=[ pvu [,F= p ,

L.w J(m, + [_(¢e,+p)q
pw2+p

L(p ,+ p)w

where the total energy per unit mass is defined as e,=p/[(y-1)p]+(u2+v2+w2)/2 and

T = G/G is the ratio of specific heats, y = 1.4 in the present computation. In the Eq. (2), the

transformation Jacobian, J and the grid metrics, _: ,-.., (_. are given by

a = x¢(y,z¢ - ycz, )+ x,, (ycz¢ - y_z¢ )+ x¢ (ycz, - y,z¢)' (3)

with,

_, _y _,] Iy,_z;-y¢z,7 z,x¢-z¢x, x,yc-xcy,]rlx fly rl, =JIy¢z¢-y_z¢ zcx¢-zcx¢ x;y¢-xcY;l.
_ (r (: [.yCz,-y_z¢ zCx,-z,x¢ xCy,-x,y_J

(4)

In an axisymmetric structured grid, the Jacobian approaches infinity at the centerline and

the denominator in Eq. (3) becomes zero. Therefore, all the grid metrics expressed in Eq. (4) are

indeterminate at the centerline. However, one may easily show that the ratios of the grid met-

rics to the Jacobian remain finite or zero at the centerline, even though the Jacobian and some

grid metrics themselves have infinite values. This suggests a way to remove the centerline sin-

gularity. The key is to choose a different way of expressing the Jacobian and the grid metrics.

New variables that replace the conventional Jacobian and the grid metrics are defined by

4



and

1
J" -7 = x¢(yoz¢ - y,G )+ G (ycz_ - y_z¢ )+ xc(y_z _ - y_z_), (5)

(6)

The new variables with a superscript asterisk defined in Eqs. (5) and (6) have finite or zero val-

ues in the entire computational domain, including at the centerline. Using the new variables,

the expressions for the flux vectors given by Eq. (2) become

(_=J'Q, ]_=_;E+_>'.F+_:'G, /r=qjE+_/;F+,*G, (_=(;E+(;F+_'.'G. (7)

In this manner, the centerline singularity is removed and all the flux variables at the centerline

may be evaluated. Especially, this treatment of the singularity benefits the calculation of the flux

derivatives in Eq. (1) near the centerline when using wide differencing stencils across the center-

line. However, the Euler equations still cannot be solved at the centerline since J" is zero there

and the vector of the conservative variables (_ vanishes from Eq. (7). This means that Eq. (1)

becomes indeterminate and it is impossible to integrate the solutions in time. However, the so-

lutions (conservative variables) at the centerline may be interpolated from the neighboring val-

ues.

III. High-Order Finite Difference Schemes

High-order finite difference schemes with high-resolution characteristics are used in the

present computation on a structured grid. The main scheme is a pentadiagonal type of central

compact finite difference scheme [3, 4]. It is a generalization of the seven-point stencil Pad_

scheme used on the interior nodes. It may be expressed as



Zf,'__+a f/_.+ f/+af,:, + ' 1, Pf,+_=; Z_.(f,+. -f,_.) (8)
m=l

where f is an objective function for the flux variables and f' is its spatial derivative on the i-

th node. The grid spacing h is a constant independent of the index i in the computational do-

main where all the grid points are equally spaced. Equation (8) may be solved by inverting a

pentadiagonal matrix. The matrix must be completed at the boundaries. Therefore, non-central

or one-sided formulations other than Eq. (8) are needed on the boundary and the near-

boundary nodes to complete the matrix. These may be expressed as

3f0'+_z0.,f'+fl0.2f2' = _-_a0._,(f., -f0) for i=0 (boundary node), (9)

em*0

4

eZ,.ofd+f,+_z,.2ff+fl,,ff: = 1 _-_a,.,,(f_-f) for/=1, (10)

1 $

fl2.ofo'+Cq.,f_'+Y[+a2,_f3"+fl2,,]_=_ _-_a2.,.(f.-f2) for i=2. " " (11)
ra_0
.r_2

The coefficients in Eqs. (8)-(11) are listed in Table 1. They are optimized, as described in Refs. 3

and 4, to achieve maximum resolution characteristics with fourth-order accuracy (second-order

in Eq. (9) for numerical stability). The optimized fourth-order compact finite difference schemes

are used to evaluate the flux derivatives in the mean flow and radial directions. On the other

hand, the flux derivatives in the azimuthal direction are calculated with a conventional central

finite difference scheme for a simple handling of the periodic condition across the branch cut.

The standard central finite difference scheme is given by

f,= 45(f,, - f_, )- 9(f+2 - f-2 )+ (f÷3 - f-3 )
60h (12)

Equation (12) has sixth-order accuracy, which is the highest order of truncation for the given



standardseven-pointstencil.Combinedwith thehigh-orderfinitedifferenceschemesin space,

theclassicalfourth-orderfour-stageRunge-Kuttaschemeisusedfor marchingthesolutionsin

time.

AsmentionedinSectionII,thesolutions(conservativevariables)areobtainedatthecenter-

linenot bysolvingthegoverningequationsbutby interpolationfromtheneighboringsolu-

tions.In thepresentwork,afourth-orderinterpolationisusedatthecenterline.It maybewrit-

tenas

f0 - 13(d + f_,)+s(A + f_2)-5(A +f-3)
32 (13)

where the negative indexes mean the values in the opposite direction across the centerline. Ac-

tually, there are as many sets of the centerline solutions interpolated by Eq. (13) as half the

number of grid points in the azimuthal direction. A unique value of the centerline solution is

finally acquired by averaging these values.

High-order schemes in space and time resolve a wider range of wavenumber or frequency

than low-order methods. However, even the present schemes do not resolve the high

wavenumber or frequency range effectively, an adaptive nonlinear artificial dissipation model

[6] is also used to remove the unwanted numerical oscillations that may develop from the unre-

solved range. The artificial dissipation model is implemented only at the last (fourth) stage of

the Runge-Kutta scheme in order to minimize computational costs. In addition to the stringent

requirements on the high-order and high-resolution numerical schemes, an accurate and robust

calculation depends heavily on the suppression of any waves that may result from unwanted

reflections on computational boundaries. The boundary conditions for a time-dependent prob-

lem should be physically correct and numerically well posed. Generalized characteristic bound-

ary conditions [7] are used as the time-dependent boundary conditions in the present computa-

tion. Non-reflecting inflow/outflow and the inviscid wall conditions are imposed at the



boundariesofthecomputationaldomainandtheconesurfacerespectively.

Theaccuracyof thehigh-ordercompactfinitedifferenceschemes,theadaptivenonlinear

artificialdissipationmodelandthegeneralizedcharacteristicboundaryconditionshasbeen

validatedthroughthe previouspublicationsof Refs.3 to 7. Theywereappliedto multi-

dimensionalsteady/unsteadyandinviscid/viscouscomputationsin thevariousbenchmark

problems:linearwaveconvectionin Ref.3,acousticradiationfromaxisymmetricbaffleinRef.

4,noisegenerationfromairfoilsinRef.5,shock-soundinteractioninatransonicnozzleinRef.6,

andwakeflowandacousticradiationfromacircularcylinderin Ref.7.It wasshownthatthey

producedveryaccuratenumericalsolutionsincomparisonwithanalyticsolutionsandexperi-

mentaldata.Theycanbeusedeffectivelyinthepresentcomputation.

IV. Procedure and Results of Numerical Simulation

In this section, the numerical simulation of an unsteady inviscid compressible flow past a

cone of vertex angle 60 ° in a subsonic speed of Mach number 0.2 is described. The simulation

uses high-order finite difference schemes and the modified form of the flux vectors in the Euler

equations, in order to eliminate the centerline singularity.

A. Grid System and Computation Procedure

For the present problem, the computational domain consists of two blocks and rotating a

two-dimensional grid plane around the centerline as shown in Figs. 1 and 2 produces an axi-

symmetric grid system. The number of grid planes in the azimuthal direction is 48. The number

of grid points is 101x50x48 in block I and 161x51x48 in block 2. This gives a total of 636,528 grid

points. The grid points are clustered along the centerline and near the edge of the cone base.

The minimum grid size at the center of the base is Ax/D = 0.007, Ay/D = 0.007 and Az/D =

27o<0.007/48 where D is the base diameter.



ThetimestepsizeisdeterminedbytheCFL(Courant-Friedrichs-Lewy)condition[8]which

isgivenby,

Chd'

_--minlu']+lw']+lw I+ c(_/_;+_;2 +_; +_rz= + _ +.;2 +_/C2 +4-;2+C,• .2 .2 I ._ .2 ]'
J

(14)

where the Courant number C = 1.0 is used in the present computation and c is the local speed of

sound. In the evaluation of the time step, the operator 'rain' in Eq. (14) does not include the cen-

terline as the denominator approaches infinity there and the Euler equations are not solved on

the centerline as remarked in the previous sections.

A steady-state flow field is first acquired by solving the two-dimensional axisymmetric

Euler equations. This is used as the initial condition for the present three-dimensional computa-

tion. Figure 3(a) shows the pressure contours and Fig. 3(b) showsth e Mach number contours.

There is a recirculation bubble in cone base region. Calvert [1] deduced this characteristic form

from his experimental measurements. The calculation, using the OpenMP [9] parallel libraries,

is performed on an IBM SP2 parallel computer at the Pennsylvania State University Center for

Academic Computing [10]. Occupying four CPUs, the actual computation time is 4.45 sec-

onds/iteration, which gives 7 microseconds/iteration/number of grid points. The computation

performs 500,000 iterations before a fully developed wake flow is generated.

B. Initial Triggering of Vortex Shedding

In the early stages of the computation, it is difficult and time-consuming to initiate vortex

shedding in the inviscid flow without some excitation. To start the first vortex shedding, the ve-

locity normal to the base of the cone is excited in the form



(15)

whereeistheamplitudeofthefluctuation,u, is the free-stream velocity, r is the radial distance,

R is the base radius, 0is the azimuthal angle, and f_ is the frequency of the excitation. In Eq. (15),

the distribution of the excitation velocity has four lobes with alternating signs on the cone base,

and the amplitude decreases rapidly to half its initial value in one time period. In the present

computation, the initial amplitude is chosen as e = 0.05 and the frequency is f_ = 0.171 u./D.

This corresponds to the regular vortex shedding frequency or the Strouhal number observed by

Calvert [1]. Soon after the excitation vanishes, a non-axisymmetric flow field develops and the

first vortex shedding occurs.

C. Investigation of Flow Field

The unsteady wake flow may be visualized by the instantaneous pressure and Mach num-

ber contours shown in Figs. 4 and 5 at the final time step (non-dimensional time is t° = u.t/D =

64.04). Figure 4 shows the longitudinal distribution in a side view, and Fig. 5 shows the circum-

ferential distribution in a rear view. The instantaneous three-dimensional unsteady flow field is

very different from the two-dimensional axisymmetric steady flow field shown in Fig. 2. The

pressure contours show many irregular vortices generated from the edge of the cone base and

the Mach number contours show strong flow fluctuations behind the cone base. The flow pat-

tern appears to be random or chaotic unlike the regular K_m_n vortex street [11] behind a two-

dimensional bluff body. It can be seen that some vortices pair and merge mutually in the down-

stream region. This results in a large-scale motion of the far wake. However, the vortices very

near the outflow boundary are dissipated non-physically because of the lack of grid resolution.

In order to investigate the unsteady motion of the wake structure, time-traced snapshots of

vorticity magnitude iso-surfaces are presented in Fig. 6. Figure 6 shows some vortex rings near

10



the cone base that have non-axisymmetric distorted shapes, which seems to induce the chaotic

flow fluctuations in the near wake and the spontaneous vortex shedding downstream. It is also

shown that the vortex rings in the near wake region interact each other and change their shapes

into the axial vortex tubes in some transitional region away from the cone base at a distance

nearly equal to the wall diameter (x/D -_ 1). Further downstream, the vortex tubes shed from

the transitional region possess a velocity component in the circumferential direction. This re-

sults in a spiral motion of the far wake structure. Moreover, the vortex tubes sometimes twist,

bend and stretch in the far wake region. These phenomena occur quite randomly and it is al-

most impossible to pick up any two snapshots with the same instantaneous flow field during

the entire computation. It is difficult to discern any periodicity from these time-traced observa°

tions of the flow field. In the next subsection, a frequency analysis of the flow signals is pre-

sented to quantify the periodicity.

D. Analysis of Flow Signals .......

The unsteady pressure and axial velocity along the centerline behind the cone are obtained

as a function of time in the fully developed wake stage. By averaging the signals in time, the ax-

ial variations of the mean pressure and axial velocity may be obtained. They are compared with

Calvert's experimental data [1] in Figs. 7 and 8. Figure 7 shows that the mean pressure coeffi-

cient from the present computation agrees with the experimental data well in the near wake re-

gion up to the location of its minimum value. It then recovers faster to the free-stream value

with a smaller overshoot than the experimental data in the far wake region. Figure 8 shows that

the mean velocity curve of the present computation is a little more positive than the experimen-

tal data and recovers slightly faster to the free-stream value too. The agreement between the

predicted pressure coefficient and mean axial velocity is much better than that achieved in the

low-order, unstructured grid calculations of Long et al. [2]. The mean stagnation point, where

11



R

= 0 and Cp = 0, of the present computation is slightly closer to the cone base than that of the

experiment. It is likely that the small discrepancy between the present results and the experi-

ment data is caused by the difference between the inviscid flow and the real viscous flow. The

Euler equations have no physical viscosity that dissipates out the flow kinetic energy as the

wakes move downstream, and the inviscid flow passes over a relatively smaller body in its ef-

fective size than the real viscous flow since there is no boundary layer displacement effect.

Two variables are defined in Ref. 1 to characterize the fluctuating components of the flow.

They are denoted by,

8-_xlO0 and _-_xlO0

where u'= u- _ is the fluctuation of the axial velocity about its mean value and u, = lul is

the magnitude of the axial velocity. Thus, 8 is a measure of the absolute level of the velocity

fluctuations and # represents the local turbulence intensity. The axial variations of 8 and ¢ are

shown and compared with the experimental data in Figs. 9 and 10, respectively. Figure 9 shows

that the present results agree well overall with the experimental data except for a slight over-

shoot in the near wake region and a small underprediction in the far wake region. Figure 10

shows the same kind of discrepancy between the present results and the experimental data in

terms of the shortening of the axial development as is explained for the mean flow results in

Figs. 7 and 8 above. The predicted overall amplitude of the fluctuations agrees very well with

the measurements. It is much better than the predictions by Long et al. [2] particularly in the far

wake region. However, the present grid is much finer in that region and the order of accuracy

of the present numerical scheme is higher. A comparison of Figs. 8 and 10 shows that the region

of the highest local turbulence intensities is in the vicinity of the stagnation point. This is consis-

tent with Calvert's [1] observations. However, this high value is associated with the lower mean

12



velocityatthislocationratherthananincreasein theabsolutevalueof thevelocityfluctuations.

In fact,asseeninFig.9,thereisaslightdecreasein theabsolutevalueofthefluctuationsin this

region.

Thepointof themeanpressureminimumin Fig.7correspondsto thetransitionalregion

(x/D ,_ 1) where the axial vortex tubes start to form as described in the previous subsection. It

coincides with the point of the mean velocity minimum where the highest speed of reversed

flow on the centerline occurs as shown in Fig. 8. This point has significance in estimating the

starting position of the periodic vortex shedding. Calvert [1] remarked that a periodic wake mo-

tion first appears in the region of the mean pressure minimum and the periodicity presumably

arises from the instability of the free shear layer in an adverse pressure gradient. He also men-

tioned that the periodicity is most prominent in the region of the mean pressure maximum. In

order to quantify the periodicity, the frequency spectrum of the axial velocity is obtained at the

point of the mean pressure maximum (x/D = 2.0). This is shown in Fig. 11. The highest peak in

Fig. 11 shows that there is a strong periodic wake motion at a non-dimensional frequency of

.fD/u_ = 0.171. This is exactly the Strouhal number found by Calvert [1]. The existence of this

peak is taken as further evidence that the present computation succeeds in simulating the vor-

tex shedding process accurately.

V. Conclusions

The subsonic inviscid wake flow past a cone has been simulated using high-order finite dif-

ference schemes on structured grids. The present computation, performed in an axisymmetric

structured grid system is achieved by changing the form of the flux vectors in the Euler equa-

tions to remove the centerline singularity in the generalized coordinates. This approach makes

it possible to investigate the complex wake flow field and to obtain the accurate values of the

flow properties. It is shown that the vortex rings in the near wake change their shapes into axial
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vortex tubes in the far wake through a transitional region where periodic vortex shedding be-

gins. A spiral motion of the wake is found. The mean flow pattern agrees well with the experi-

mental data when account is taken of the likely differences between the inviscid and the viscous

cases. It is confirmed that the point of the mean pressure minimum is the starting position of the

periodic vortex shedding. A spectral analysis of this periodic phenomenon shows that the

Strouhal number is 0.171. This is in exact agreement with the experimental observation. On the

basis of the very good agreement between the predictions and experiment, it is expected that

the present methodology may be used for further analysis of wake-dominated flows past an ax-

isymmetric blunt-based body.
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Table 1. List of optimized coefficients for compact finite difference schemes

Figure Captions

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Diagram of computational domain

Grid mesh system: (a) entire view, and (b) zoomed view

Zoomed side view of axisymmetric steady-state flow field for the initial condition: (a)

pressure (p/p_), and (b) Mach number contours

Zoomed side view of instantaneous flow field at the final time step: (a) pressure (p/p_),

and (b) Mach number contours

Zoomed rear view of instantaneous flow field at the final time step (x/D = 1.0 from the
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Fig.6.

Fig.7.

Fig.8.

Fig. 9.

Fig. 10.

Fig. 11.

cone base): (a) pressure (p/p_), and (b) Mach number contours

Time-traced snapshots of vorticity magnitude iso-surfaces (17 levels of [Fo[D/u. from

0.0 to 0.002) in the interval of time t_,_- t = 0.642 D/u. between two successive pictures

Axial variation of mean pressure along the centerline behind the cone

Axial variation of mean axial velocity along the centerline behind the cone

Axial variation of velocity fluctuations in terms of free-stream velocity

Axial variation of velocity fluctuations in terms of the local axial velocity

Spectrum of axial velocity fluctuations at the point of mean pressure maximum
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Equation (8) Equation (9) Equation (10) Equation (11)

al = 0.6511278808920836

a2 = 0.2487500014377899

a3 = 0.006144796612699781

o_ = 0.5775233202590945

It = 0.08953895334666784

ao,1 =-3.061503488555582

ao_ = 5.917946021057852

ao_ = 0.4176795271056629

_,1 = 5.870156099940824

_,2 = 3.157271034936285

al,o = -0.5401943305881343

a m = 0.8952361063034303

al,3 = 0.2553815577627246

al,4 = 0.007549029394582539

Oa,o = 0.1663921564068434

a2,o = -0.1327404414078232

a2A = -0.6819452549637237

a2,3 = 0.7109139355526556

az4 = 0.2459462758541114

a2,s = 0.003965415751510620

a_,2 = 0.7162501763222718 - f12,0 = 0.03447751898726934

flt_ = 0.08619830787164529 a'2,1 = 0.4406854601950040

a,2_ = 0.6055509079866320

fl2,4 = 0.08141498512587530

Table I
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Figure 5-(b)
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The Discontinuous Galerkin Finite Element Method
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Abstract

The preliminary implementation and testing of the quadrature free Discontinuous
Galerkin Finite Element Method in one and two dimensions are discussed. With an

objective of understanding the method, algorithms to solve the linear scalar advection

equation with periodic boundary conditions using the method have been written and

executed successfully. A qualitative comparison of Lagrange polynomials and simple

monomials as choices for the basis function set is made. Results from the algorithms

using both Lagrange Polynomials and simple monomials as basis functions are also

presented.

1 Introduction to the Discontinuous Galerkin

Method

Convection dominated problems arise in applications as diverse as aeroacoustics,

gas dynamics, meteorology, oceanography, turbulent flows, viscoelastic flows, magneto

hydrodynamics and electromagnetism, among many others. Devising robust, accurate,

and efficient numerical methods for solving these problems is not a trivial task for two

reasons. The first is that the exact solution of nonlinear problems develop discontinu-

ities after finite time, and the second is that these numerical methods might display

complicated and erroneous solutions at these discontinuities. Thus, while developing

these numerical methods, care must be taken to guarantee that the discontinuities of

the approximate solutions are physically relevant, and that the appearance of discon-

tinuities in the approximate solution does not induce spurious oscillations [1].

The Discontinuous Galerkin Finite Element Method (DG method) is one of those

methods that are being developed to successfully address the issues mentioned above.

The original DG method was developed in 1973, but it is only recently that enhance-

ment and evolution of the method are taking place. The method has been proven to

be well suited for high order accurate large time scale simulations. An important dis-
tinction between the DG method and the conventional finite element methods is that
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theresultingformulationis localto theelementandthesolutionisnotreconstructed
by lookingat the neighboringelements.Thuseachelementin the DGmethodcan
bethoughtof asanindependententity,merelyrequiringtheboundarydatafromthe
surroundingelements.SincetheDGmethodincorporatesnumericalfluxesanddis-
continuouselements,it canbeconsideredasageneralizationoffinitevolumemethods.
Owingto its uniquefiniteelementnature,theDGmethodhasnumerousadvantages
overclassicalfinitevolumeandfiniteelementmethodssuchas[1,2]:

• TheDGmethodcanbeusedto obtainuniformlyhighorderaccuratesolutions.
• Themethodishighlyparallelizablesincetheelementsarediscontinuousandthe

massmatrixisblockdiagonalandreadilyinvertible.
• It is suitedfor complexgeometriessinceit canbeusedonunstructuredgrids.

Themethodhasalsobeenshownto beimmuneto meshdiscontinuities.It also
requiressimpletreatmentoftheboundaryconditions.

• It caneasilyhandleadaptivestrategies,sincerefiningorcoarseningthegridcanbe
achievedwithoutconsideringthecontinuityrestrictionstypicalto theconforming
elements.

• It hasseveralusefulmathematicalpropertieswith regardsto stabilityandcon-
vergence.

• Themethodiscompact,sinceeachelementis independent.Thiscompactness
allowsforastructuredandsimplifiedcodingforthemethod.

• Themethodallowsforheterogeneityintheelements,thatis,theorderofaccuracy,
shape,andeventhe choiceof governingequationscanvaryfromelementto
element.....

AlthoughtheDGmethodis lesssusceptibleto theproblemsthat arecommonin
finitedifferenceschemes,it isnotwithoutafewweaknesses[2].Themethodhasbeen
recognizedasexpensive,in termsof bothcomputationaloperationcountandstorage
requirements.Althoughtheoreticallythemethodcanbeappliedto anelementofany
shape,therequirementof numericalquadraturefor the integralsin the formulation
hasrestrictedtheapplicationsto hexahedralandquadrilateralelements.Therecently
developed[3]quadraturefreeDG methodtriesto resolvetheseproblemsby using
polynomialbasisfunctions,theproductofwhichcanbeintegratedwithoutnumerical
quadrature.

Therestof thisreportdealswith the quadraturefreeDG methodappliedto
thescalaradvectionequation,withperiodicboundaryconditions.Resultsfor one-
dimensionallinearandanonlinear_lvectionequationarepresented,followedbysolu-
tionsof thetwo-dimensionallinearadvectionequationonasquaredomain.

2 Formulation of the DG Method

Let the solution in an arbitrary domain be governed by a conservation equation of
the form

_, + v. # = 0 (1)



Let the domain be divided into smaller elements _t(x, y, z) that span the domain.

Let the solution in each element be approximated using an expansion of a basis set
given by

N+I

_a = _ b._j (2)
j=l

B _ {bk,1 < k < _(p, d) + 1} (a)

The number of basis functions N + 1 depends on the order of expansion denoted by
p, and the number of dimensions, d. Application of the traditional Galerkin method

to equation (1) using (2) and (3) gives,

£ bk(u,+v r)da: 0
for k= l...N + l.

Using (2) and integrating by parts, equation (4) can be recast as,

(4)

(5)
j=l

for k= 1...N+I.

where d_' is the normal surface area element (or the line element in 2D), and /_R

is the Riemann flux vector through the surface element, which will be approximated

using the flux values of the element and the neighboring element.

It is convenient to carry out the integrations in the formulation (5) in transformed

coordinates. In a conventional finite element method using quadrature, the integrals

are calculated on a mapped element (denoted by A), but the final equation is evaluated

and assembled in the real coordinates of f_. Since there is no assembling of the elements

involved in the DG method, by mapping even the variables uj into the transformed

coordinates, one can get a compact form of the equation (5). If the transformation from

ft to A is linear, the storage requirements will be minimized. This will be explained in
detail below.

Let the coordinates in the transformed space be (, r/ and C'. Let the unknown

variables in the transformed element A(_, rh C) be denoted as vj. Then,

N+I

for k = 1 N + 1, where J -- o(x,_,z) and J8 is the Jacobian of the surface (or line)""" o(_,n,O '
coordinate transformation.

In particular, considering a linear advection equation in 2D, the flux is given by

N+I N+I

j----I j=l

(7)

and (6) can be written as,



where

M,j \ Ot,I - t(_j_ + f._ bkPR"IJ.la_= o

M_j = fzx b_bklJIdA

(8)

(9)

and
iq

Kij = JA J-1Vbkb_lJIA (10)

for k = 1...N+ 1,j = 1...N+ 1.

Due to the presence of the term j-l, the matrix Kij is made up of a sum of several

matrices. The Riemann flux is approximated as a Lax-Friedrich's flux of the form

where b_ is the flux of the element to the left of the edge, and vecFs is that of the

element to the right of the edge. _ is the unit normal to the edge from left to right,
and a is a smooth positive function.

3 Computational Aspects of the DG Formula-

tion

The number of operations and the amount of storage required for the calculation

of the integrals in the above formulation are determined by: .....

1. the order of the coordinate transformation and

2. the choice of basis functions.

If the transformation is linear, then J is a matrix made up of constants and IJ I

is independent of { or 77 • This means that a single mass matrix Mij and component

stiffness matrices Kij can be used for all the elements, thus minimizing the required

storage. This is accomplished by using arbitrary triangles with straight edges for

and an equilateral triangle for A, with the origin at its centroid. This is displayed in
Fig. 1.

{ } {} [ ]x-xo =Jr _ ,Jr= al a2
Y - Yo 77 bl b2

where

al = xa - x2, a2 = 1/sqrt3(2xl - x2 - x8)

bl=y3 - y2, b2=l/sqrt3(2yl - Y2 - Y3)

where xl...x3 and Yl...Y3 are as shown in the figure 1, and x0 and !/0 are the

coordinates of the centroid of the element _. The transformation matrix Jr will be



l

y ./x\

x

t
m

Figure 1: Sketch of the transformation from physical to canonical coordinates

different from, but related, to the transformation Jacobian d which appears in Eqn.

(8). ( JT = J' ).

This linear transformation also greatly reduces the computational time requirement.

Since a single mass matrix is involved for all elements, it can be inverted prior to the

main computation. Hence time marching for each element reduces from solving a

system of equations to multiplying and adding matrices and vectors.

3.1 Choice of the basis functions

The choice of the expansion basis set greatly influences the computation time. Re-

searchers [4] have worked on various polynomial basis function sets varying from simple

monomials to orthogonal Legendre functions. A comparison of only the conventional

Lagrange polynomials and simple monomials is presented here.

For a problem involving nonlinear flux , the integrals in Mij and Kij will involve
products of more than two basis functions in their integrand. Choosing the conven-

tional Lagrange polynomials for the basis set will necessitate excessive computation

using numerical quadrature at each time step. Even if the integrals are computed an-

alytically prior to the main computation, a huge storage will be required. The newly

developed quadrature free approach aims at solving this problem by choosing simple

monomial expansions for the basis set, thus making the evaluation of integrals simpler,

and the matrices M and K sparser. The monomial expansions will be of the form

_irt/. (For e.g. a second order basis set can be B = {1, _, r_,_2, _, r/2}. However, there

are two drawbacks of the quadrature free approach. The first is that the condition

number of the mass matrix is very high when monomials are used as basis functions.

The second is that the evaluation of boundary integrals in Eqn. (8) will involve edge

transformations. Hence, evaluating the boundary integrals in the quadrature free ap-

proach will require relatively complex coding and more computational effort. But this

increase in computation effort will be offset by the decrease owing to the simplified

calculation of the mass and stiffness matrix integrals.

On the other hand, if the flux is linear, using either Lagrange polynomials or the

monomials, the integrals in M_j and Kij can be calculated analytically and stored

before the main computation, without much usage of the memory. The mass matrix

computed using Lagrange polynomials will be denser, but with a relatively lesser condi-



tionnumbercomparedtothemassmatrixcomputedusingmonomials.Thecalculation
oftheboundaryintegralwill beeasierandfasterusingtheLagrangepolynomials.

4 Results From the Implementation of the DG
Method

Several programs have been written to implement and test the quadrature free DG

method in one and two dimensions. The results from these programs for the linear

scalar advection equation in one and two dimensions using both the Lagrange polyno-

mials and monomials are presented. A nonlinear advection equation in one dimension

is solved using the quadrature free approach. A periodic boundary condition is imple-

mented for both one and two-dimensional calculations. Time marching is accomplished

using Crank Nicolson's 2nd order scheme, a Fourth-order Runge-Kutta explicit scheme,

and the Total Variation Bounded Runge-Kutta three (TVBRK3) stage method.

4.1

The test equations are

and

One dimensional calculations

cqu cqu

0--/ + a_ = 0 (12)

0u a0(u2/2)
0--_+ Oxx = 0 (13)

on the domain 0 < x < 10 with periodic boundary conditions.

The solution to the linear problem (12) is obtained with two initial conditions. The

first is a half sine wave over a unit interval, and the second is a normal shock. While

using the monomials, the initial condition was expanded as a Taylor series about the

center of each element. The solution obtained using Lagrange polynomials is shown in

figures 2a(1 st order approximation polynomials with 2nd order time marching) and 2b

(2 nd order approximation polynomials with 4 th order time marching).

The programs for the implementation of the DG method in one dimension are

written in Matlab. The interval from x = (1, 10) is divided into 100 parts: that is, the

value of Ax = 0.1. It is observed that the time step required for stability decreases as

the order of spatial approximation increases.

The calculations for the linear advection equation with monomials are shown in

Fig. 3a, b and c. It was observed that the use of monomials lead to oscillations in

the approximate solution where the exact solution had sharp discontinuities, as can be

seen in Fig. 3b. Finally, the solution for the nonlinear Eqn. 13 is shown in Fig 3d. The

initial condition was a sine wave, which transformed into an 'N'-wave after sufficient

time.
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Figure 3: One dimensional calculations using monomials. (a) 3 rd order approximation mono-

mials with 3rd order time marching, (b) Absolute error in the calculation, (c) Calculations

with an initial condition of a normal shock wave, (d) Solution for the nonlinear advection
equation.
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Figure 4: The initial condition. (a) The sine wave pulse with unit maximum value at the

center of the domain. (b) a contour map of the initial condition.

4.2 Two dimensional calculations

4.2.1 The advection equation

The test equation is

O"-U-U+ a_x + b OU =0
Ot Oy

(]4)

u(0, x, y) = [sin(_rx) sin(Try)] 4

on a periodic square domain -1 < x, y < 1 . The grid is made up of 800 similar

right angle triangles. The program is written in Fortran 90. The basis set is made up
of Lagrange polynomials of up to second order and monomials of up to 4 th order. The

initial condition is shown in Fig. 4.

Figure 5 shows the results for the case with the basis set made up of linear monomi-

als. A similar result is obtained with all other choices of basis functions. The speeds of
the wave in the x and y directions are taken to be the same. It is observed that the size

of the time step required for a stable solution decreases as the order of approximation
is increased.

4.3 Calculations for the linearized Euler equations in two
dimensions

Consider the propagation of an acoustic pulse in a constant mean flow. The lin-

earized Euler equations are given by,



with

c3U OE OF

o--T+ + N =o (15)

U /Mzu + P/Po , F =u ,E = M_u
v Mzv Muv + P/Po

p Mxp + pou M_p + pov

where p, u, v, p are the flow variables, and Mz and My are the values of the mean

flow in the x and y directions respectively, non-dimensionalized by the speed of sound

based on the mean thermodynamic values, and P0 is the mean flow density.

The finite element discretization of the above differential equation results in a sys-

tem of equations that can be written as,

ii000 M 0 0 OU 0 K22 0 K24 F2

0 0 0 0 /(33 K34[ U--
(16)F3

0 0 M 0 /(42 /(43 K44J F4

where M and Kij are the mass and stiffness matrices, and F1... F4 are the right

hand side vectors of the corresponding individual equations.

4.3.1 Results

The domain is divided with unstructured triangulation. Basis sets of degree 1

and 2 (order 2 and 3 respectively) are used. A square doniain is considered, with a

uniform mean flow from the left to right, over a rigid bottom wall. An initial Gaussian

distributed acoustic pulse is located near the lower boundary, as shown in Fig 6.

Reflective boundary conditions are imposed on the lower boundary, and non-reflecting

boundary conditions are imposed on the three other boundaries. The radiating bound-

ary conditions are implemented using characteristic variables [5]. Figures 7a and b
show the computed propagation of the acoustic disturbance with the mean flow. Some

reflections are observed near the right boundary, and these are due to the characteristic

method of boundary condition used, as mentioned in [5].

5 Conclusions and Future Work

The linear advection equation with periodic boundary conditions has been solved

using the DG method in one and two dimensions. A qualitative comparison of the

Lagrange polynomials and simple monomials as choices for the basis set has been made.

A basis set comprised of simple monomials is more suited for h-p refinement of the

solution. The choice of monomials for nonlinear convective equations is thought to be

advantageous compared to the Lagrange polynomials under the formulation described,

in which, the nonlinear flux is evaluated by multiplying or dividing the approximating

expressions for the basic variables. However, the formulation involving the nonlinear

flux could also be solved using iterative techniques. It remains to be investigated


